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Abstract 
 

The traditional GPS common view technique, using C/A code receivers, is the main time 
transfer method used by various timing laboratories over the world.  Moreover, this method 
is used to realize the TAI (Temps Atomique International) and the TA (F)  (Temps 
Atomique Français).  Clock offsets between laboratory clocks are determined according to 
a fixed procedure defined by the CCTF (Comité Consultatif du Temps et des Fréquences).  
Using this procedure, one can perform on average 54 tracks per day (theoretically 90 tracks 
per day), providing clock offsets. Each of these clock offsets results from one 780’s track 
and is obtained as a result of a quadratic regression, followed by various model-based 
corrections and finally a linear regression.  The clock offsets are then issued with their 
standard deviations.  However, this simplified estimate does not take into account the 
statistical properties of the different types of noise present in the measurement.  We propose 
here to rigorously estimate this time uncertainty for various types of noise that characterize 
the transmitted GPS time offset data.  This is achieved by the calculation of the covariance 
matrix of time samples.  This method provides us with the variances of the drift coefficients 
and of the residuals, in the case of a linear drift model for 1-day sample sets, taking into 
account the different types of noise. In this paper, we compare the obtained results with 
simulated and real data over several days. 
 
 
 

I.  GPS  TIME  TRANSFER 
 

The International Atomic Time (TAI) scale is computed by the Bureau International des Poids et 
Mesures (BIPM) from a set of atomic clocks distributed in several timing laboratories around the 
world.  The time transfer procedure presently used for the realization of TAI is based on the common 
view approach [1]. The principle to compare remote clocks for the computation of TAI is to connect 
each timing laboratory clock to a GPS receiver and to simultaneously observe the same satellite.  
Thanks to a simultaneous observation of the same satellite by two remote time laboratories, the time 
offset between each station clock and the satellite clock is deduced by simple subtraction according to 
the laboratory and satellite positions. 
 
About 50 tracks are realized per day.  To compute the TAI, the participating time laboratories have to 
provide one local-to-GPS time offset value per day.  This value is deduced from a linear interpolation 
of time offset samples accumulated over 1-day tracks  (Figure 1).  The daily time offset if issued with 
an estimation uncertainty associated to the interpolation. 
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II.  TIME  DEVIATION  DATA  INTERPOLATION 
 

The first step when processing the deviation data is to carry out a linear interpolation of the N samples 
{ }0 1 1, ,..., Nx x x −  we have gotten every day at the moments { }0 1 1, ,..., Nt t t − .  This permits us to 
estimate the daily time offset and also the uncertainty of this estimate.  The method usually used to 
obtain the interpolated function ( )g t at b= +  of this samples is the quadratic least-squares 
interpolation.  The uncertainty is then obtained by estimating the daily standard deviation Dσ  as  
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INTERPOLATION  USING  CHEBYSHEV  POLYNOMIALS 

 
Rather than this method, we use the first two Chebyshev polynomials [2-4] as interpolating functions.  
The interpolated function x (t) of the time deviation data is gotten as: 
 
 0 0 1 1( ) ( ) ( ) ( )x t t t e tρ φ ρ φ= + +  (2) 
 
where 0 ( )tφ , 1( )tφ  are the first and the second Chebyshev polynomial and )(te  is the error function 
of the interpolated function )(tx .  This error function assumed random behavior of )(tx .  All the 
parameters 0ρ and 1ρ  have the same dimension as )(tx  and are to be estimated by 0ρ̂  and 1ρ̂ .  As 
shown below, this estimate is greatly simplified by orthogonality and normality properties of the 
Chebyshev interpolating functions. 
 
 
ESTIMATION  OF  THE  PARAMETERS 

 
Let us define the vector jΦ  associated with the interpolating functions ( )j tφ as 
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The matrix [ ]Φ  is built as 
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Let us define now the vector X as 
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According to (2), we may express the vector X as 
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 [ ]X P E= Φ +  (6) 
 
where P is the vector of the two parameters we have to estimate, and E the error vector standing for 
the purely random part of X: 
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The parameter vector P may be estimated using this formula 
 
 [ ] [ ] [ ] [ ]T T TX P EΦ = Φ Φ + Φ  (8) 
 
The orthonormality property of the Chebyshev polynomials implies: 
 
 [ ] [ ] [ ]T

3IΦ Φ =  (9) 
 

In addition, because of the overall average [ ]T 0EΦ =  the parameter vector may be estimated as: 

 
 [ ]TP̂ X= Φ  (10) 
 
Thus, the estimate ˆ jρ of the parameter jρ  is obtained by calculating 
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III.  UNCERTAINTY  ESTIMATION 

 
The residuals may be defined from (10) as a vector δ : 
 
 [ ] ˆW Pδ = Φ  (12) 
 
The variance of the residuals 2

Eσ may be estimated by 
 

 2 T1
E N

σ δ δ= ⋅  (13) 

 
Knowing that the overall average [ ]T ˆ 0Pδ Φ =  and using (12), we have 

 
 T T Tˆ ˆX X P Pδ δ⋅ = ⋅ − ⋅  (14) 

 
One of the main properties of the Chebyshev interpolation parameters is that ( )0 1cov , 0ρ ρ =  for 
any type of noise.  The variance of the residuals may thus be estimated as 
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 ( )
0 1

2 2 2 21
E X N ρ ρσ σ σ σ= − +  (15) 

 

where the variance 2
Xσ  of the )(tx  is equal to the scalar product T1

X X
N

⋅ .  As for the scalar 

product TP P⋅ , it is equal to the sum of the variances of each estimate 0ρ̂  and 1ρ̂ . 
 

 
ESTIMATION  OF  THE  VARIANCE  OF  THE  RESIDUALS  FROM  THE  NOISE  
LEVELS 
 
 
CORRELATION  OF  SAMPLES 

 
We have to estimate the uncertainty of time offsets between two time laboratory clocks every day.  
This estimate must be evaluated according to the level of the various noises that are in the time 
samples.  The autocorrelation function )(tRx  of these time samples )(tx  contains information about 
the type and the noise levels.  The power spectral density )( fSx  is the Fourier transform of the 

autocorrelation function )(tRx .  The two-sided )(S2 fSx  and the one-sided )( fSx  power spectral 
densities are thus defined as 
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so we have 
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By taking into account the low cut-off frequency lf  and the high cut-off frequency hf , we may 
rewrite (17) as 
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We modeled the different types of noise according to the power-law model of )( fSx  as 
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The different types of noise are identified by the values of α as 
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•  white PM for α = 0, 
•  flicker PM for α = -1, 
•  white FM for α = -2, 
•  flicker FM for α = -3, 
•  random-walk FM for α = -4. 
 
Table 1 shows the noise levels-based formulas of the autocorrelation function )(tRx  and also the 
intercorrelation function )( ijx ttR −  of time offset sequence [4]. 
 

Table 1.  Correlations of the time offset data )(tx  versus the noise levels αk . 
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0.5772≈C  is the Euler constant, lf  is the low cut-off frequency, and hf  is the high cut-
off frequency. 

 
 
VARIANCES  OF  THE  PARAMETERS  AND  THE  RESIDUALS 

 
As shown in (15), we have to calculate the variance of the residuals from the variance of the time 
offset samples )(tx  and that of the parameters 0ρ̂  and 1ρ̂ .  Thus, we have to know 2

Xσ  and the 2

iρσ . 

 
The variance of )(tx  is given as 

 2 2 ( ) ( )X Xx t R tσ = =  (20) 
 
Le us consider the covariance matrix of the parameters as 
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Finally, the variance of the residuals is thus calculated according to (15) with the values of the 
variance of the time offset samples given by (20) and also with the variances of the interpolating 
parameters (Table 2) shown in (25).  This uncertainty estimation of the interpolated time offset value 
is realized using only the noise levels, since it is based on the autocorrelation function of the time 
offset samples. 
 

         
        Table 2.  Variance of the interpolation parameters 
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The coefficients {k0,…, k-4} represent the noise levels of the power spectral density of the
time offset.  0.5772≈C  is the Euler constant. 0τ  is the time offset sampling period.  The 

low cut-off frequency lf  is assumed to be much lower than 1

0Nτ
.  Assuming a sampling 

satisfying the Shannon rule, the high cut-off frequency is 1
2 0

fh τ
= . 

 
 
EXPERIMENTAL  VALIDATION 

 
 
COHERENCE  ASSESSMENT  USING  SIMULATION 

 
Aiming at realizing the assessment of the uncertainty estimation given by (15), (20) and (25), we first 
identified the different noise types the time offset samples actually contains.  Then we generated a set 
of sampled signals in accordance with the levels of these noise types. 
 
Figure 2 shows a real data sequence taken as an example to be analyzed.  It represents time 
connection data between the Observatoire de Besançon and the Observatoire de Paris between 7 
September 2003 and 2 December 2003.  From this signal, we generated 1000 time deviation 
sequences of 26 days.  We determined the levels of the different types of noise as in [3,6].  According 
to the obtained results, only white FM and white PM with the levels found are included in the 
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simulated sequences. 
 
To compare the classical uncertainty estimation Dσ  as in (1) and the noise-based uncertainty Eσ  
given by (15), we reflected the value of the noise-based standard deviation we calculate over 26 days 
on all of the set of daily standard deviations.  As shown in Figure 3, the new uncertainty estimation 

2
Eσ  we calculated over a fixed number of days agrees with the daily uncertainty values 2

Dσ . 
 
Figure 4 represents the dispersion of the noise-based standard deviation Eσ  and that of the daily 
standard deviation Dσ .  This result is obtained from the 1000 sequences we generated.  These 

standard deviations show a 2χ  law.  However, the dispersion of the noise-based variance is about 5 
times thinner than the dispersion of the statistic-based one.  We may thus conclude that the 
noise-based uncertainty estimation is a better indicator than the daily uncertainty. 
 
Taking into consideration the 2χ  distribution of the uncertainty dispersion, we rate the value interval 
where the daily standard deviations should be included.  For example, in Figure 4 2.68 nsEσ =  and 
the number of degrees of freedom l = 90.  The confidence interval of 90% is determined [5] to be 
 
 2 2 20.812 1.336E D Eσ σ σ⋅ < < ⋅  (26) 
 
According to the value of Eσ , we calculate the confidence interval of 90% to be estimated as 
 
 2.411 3.093Dσ< <  (27) 
 
The result is represented in Figure 5 in the case of one example among the 1000 sequences we 
simulated.  It shows again the good agreement between the daily uncertainty estimation and the 
noise-based one via the deduced confidence interval. 

 
REAL  TIME  TRANSFER  DATA 

 
We operated the noise-based uncertainty estimation on the real data we used above to determine the 
typical noise levels.  The results are shown in Figure 6.  We notice that the time transfer uncertainty 
based on the noise-based variance 2

Eσ  is relatively underestimated compared to the daily uncertainty 
that is calculated as in (1).  The difference is evaluated on average to be 15%. 
 
Several differences between the simulated data and the real time offset samples may explain this 
difference:  On the one hand, some samples are actually missing sporadically, while the simulated 
signals are always complete.  On the other hand, there are some occasional high dispersions of time 
offset evaluation.  These may explain why the estimation of the daily standard deviation Dσ  has been 
overestimated. 

 

IV.  CONCLUSIONS 
 

On GPS time transfer, the quadratic least-squares interpolation is the usual method to estimate the 
daily time offset between two time laboratory clocks.  This time offset information is issued with 
other significant information, namely the time offset uncertainty.  That information is obtained by the 
calculation of the daily standard deviation of the residuals of the interpolated samples. 
 
In this work, we chose to perform Chebyshev interpolation in order to lead to a formulation of the 
time transfer uncertainty according to noise levels contained in the GPS time offset data.  We saw that 
the results show a good agreement with the simulated time offset signals.  They also proved that the 
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noise-based uncertainty estimation over a few days is a better indicator than the daily uncertainty 
estimation.  However, we noticed that in the case of real time offset samples, the uncertainty was 
underestimated compared to the set of daily standard deviations.  This discrepancy is probably due, on 
the one hand, to a few sporadically missing samples which are not taken into account in the 
simulations.  On the other hand, the connection discontinuity and perhaps also the occasional 
dispersion imply an increase in the daily standard deviation when the noise-based one is estimated in 
accordance of the noise levels over several days. 
 
As the noise-based estimation agreement with the classical one is checked in this work, that 
discrepancy does not question the truthfulness of the noise-based uncertainty we formulated.  But it 
shows the necessity to evaluate the inherent uncertainty offset due to the occasional dispersion and 
discontinuity and also the necessity to take into account missing samples.
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GLOSSARY  OF  SYMBOLS 
 

Dσ  Standard deviation of the residuals estimated statistically over 1 day 

N Number of samples in a 1-day track 

( )g t  Linear interpolation function of the time offset samples ix  

ix  time offset samples at the moments it  

a, b Linear interpolation parameters of ( )g t  

it  Sampling moments 

( )x t  Time offset sample: the time difference between the remote and local clocks 

( )i tφ  with { }0,1i ∈ .  The 1st and 2nd Chebyshev polynomials.  i is the degree of the polynomial 

iρ  with { }0,1i ∈ .  The first and second Chebyshev parameters 

( )e t  Purely random behavior of the time offset ( )x t  

ˆiρ  with { }0,1i ∈ .  Estimates of the first and second Chebyshev parameters 

iΦ  Vector whose N components are the values of ( )i tφ  at each measurement time 

[ ]Φ  Matrix of two column vectors 0Φ  and 1Φ  

P Vector whose components are the first and the second Chebyshev parameters 

E Vector form of ( )e t .  The components of E are the values of ( )e t  for each sample ix  

X Vector form of ( )x t .  The components of X are the N time offset samples 

[ ]mI  The unit matrix m x m 

P̂  Vector whose components are the estimates of the 1st and 2nd Chebyshev parameters 

δ  Vector whose components are the N residuals of the interpolated sequence 

Eσ  Standard deviation of the residuals estimates in accordance with the noise levels 

Xσ  Standard deviation of the time offset sample ( )x t  

iρσ  Standard deviation of the Chebyshev parameters iρ  

( )XS f  One-sided power spectral density of the time offset sequence ( )x t  

2S( )XS f  Two-sided power spectral density of the time offset sequence ( )x t  

( )xR t  Autocorrelation function of the time offset sequence ( )x t  

lf  Low cut-off frequency of the spectral density ( )XS f  

hf  High cut-off frequency of the spectral density ( )XS f  

kα  Noise level associated with the f α noise of the power spectral density of time offset ( )XS f  

[ ]vC  Covariance matrix of the Chebyshev parameters 0ρ  and 1ρ  
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QUESTIONS  AND  ANSWERS 
 
JOHN DAVIS (National Physical Laboratory, UK):  Did you do any statistics just looking at GPS 
measurements at the single epoch?  That is, measurements that were all taken at the same time, presuming 
that you were using a multi-channel GPS receiver?  Are you using a multi-channel GPS receiver to make 
your measurements? 
 
MAHMOUD ADDOUCHE:  I use the BIPM schedule.  So I track one satellite at one time.  
 
DAVIS:  The point was that if you are using a multi-channel receiver and you are making your 
measurements at the same epoch, then if you look at the statistics on that, you will be independent of the 
clock noise; whereas, if you are making measurements at successive epochs with a single-channel 
receiver, you are going to get a mixture of clock and time transfer noise.  This is an easy way of 
distinguishing the two, which might help you. 
 
ADDOUCHE:  It will be interesting, but I didn’t see this. 
 
DAVIS: There should be plenty of data available for you to have a look at.  We can provide you with that. 
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